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Recently, the synchronization and signal processing ability of a locally and linearly coupled array of
bistable elements was enhanced by the addition of uncorrelated noise [J. F. Lindner, B. K. Meadows, W.
L. Ditto, M. E. Inchiosa, and A. R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)]. Here, we detail the perfor-
mance of such an array as a function of both coupling and noise. Simple theoretical arguments, ground-
ed in extensive numerical studies, suggest how to “tune” the array for best synchronization and signal-
to-noise ratio. Specifically, we propose that, for large array size N, the optimal coupling scales like N2
and the optimal noise variance scales like N. This scaling matches the coupling-induced correlation
length to the array length and the noise-generated mean hopping time to the modulation period, thereby

creating a stochastic resonance in space and time.

PACS number(s): 05.40.+j, 02.50.—r, 87.10.+¢

A noisy, periodically modulated, nonlinear system un-
dergoes stochastic resonance (SR) when the characteristic
time scales of the stochastic forcing and the deterministic
forcing match [1]. Recent research has demonstrated
that SR can be enhanced by coupling a single stochastic
resonator into an array of identical resonators [2-5].
Spatiotemporal synchronization improves the response of
an individual resonator to the modulation, as measured
by an enhanced signal-to-noise ratio (SNR). The result-
ing array enhanced stochastic resonance (AESR) is
characterized by a significantly increased output SNR,
compared to a single uncoupled resonator. In this paper,
we understand AESR and its attendant spatiotemporal
synchronization as a matching of time and space scales
through the tuning of noise and coupling. We document
the necessary tuning by extensive numerical simulations
and, based on these data, provide theoretical arguments
to quantify the scaling of optimal noise and optimal cou-
pling with array size. We propose that, for large array
size N, the optimal noise scales as N and the optimal cou-
pling scales as N2.

We study the same locally and linearly coupled array
of periodically forced, bistable dynamic elements (over-
damped oscillators, stochastic resonators) as in Ref. [2].
The equations of motion are

mx, +yx,=kx,—k'x}+e(x, _;—x,)+elx, 1—x,)

+ Asin(27t /T)+0G,(¢) , (1)
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where n=1,2, ..., N, and we impose free boundary con-
ditions. To reduce the dimension of the parameter space,
we study the overdamped limit yx >>mX. We take G, (t)
to be Gaussian white noise with zero mean and unit
power spectral density (PSD). However, in practice,
oG, (t) is band limited with a PSD of height D for fre-
quencies | f| < fy and zero beyond. We characterize the
noise either by its PSD height or by its mean squared am-
plitude or variance 0>=2Df . Note that the noise is “lo-
cal” (uncorrelated from site to site) rather than *“global”
(correlated from site to site) [3,4].

We numerically integrate the stochastic differential
equation (1) using the Euler-Maruyama scheme [6] with a
time step dt=1/(2fy)=T /8192 that is half the time
step used in Ref. [2]. We Fourier analyze the discretely
sampled time series of the middle oscillator in the array
to compute a PSD histogram. From this, we compute an
SNR, defined here as the ratio of the signal power divided
by the noise power in the signal frequency bin, expressed
in decibels (dB). Note that the state point of each oscilla-
tor moves in a double-welled potential. Unlike Ref. [2],
we do not first filter the time series to remove intrawell
motion. However, as in [2], we choose our operating re-
gime just below the deterministic switching threshold so
that in the absence of noise the oscillator is confined to a
single well of the bistable potential, but small noise can
induce significant hopping between wells. We obtain
similar results for smaller driving amplitudes.

Figure 1 illustrates the spatiotemporal evolution of an
array of N =512 oscillators, at moderate values of cou-
pling and noise. Time ¢ increases upward; oscillator in-
dex n increases from left to right. An oscillator is colored
blue if it is in the left well and red if it is in the right well.
The saturation of the colors decreases to zero (white) at
the center, reflecting the ambiguity of assigning a well to
an oscillator on the barrier between the wells. All the os-
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cillators were started in the blue well but with a random  and the noise, this time on the spatiotemporal evolution
spread in their initial positions. A short transient was  of a chain of 65 oscillators. In the top panel the periodic
omitted. The equal amounts of red and blue in the figure  forcing is turned off, and in the bottom panel the forcing
reflect the symmetry of the bistable potential. is turned on. Consider first the case of no forcing. Let A

Figure 2 illustrates the effect of varying the coupling be the spatial scale or correlation length, and let  be the

- gy

Left Right
Well Well

FIG. 1. Time evolution (up) of an array (across) of 512 locally and linearly coupled, bistable nonlinear oscillators. Oscillators in
the left well are colored blue while oscillators in the right well are colored red. A single forcing period is marked on the vertical
scale. Coupling is £e=1, and noise variance is 10log,0?=15 dB. Other parameters: k=2.1078, k’=1.4706, A =1.3039,
f=1/T=0.1162.



time scale for hopping. The ‘“‘area” of a typical red (or
blue) feature is A7. Clearly, A must increase from 1 to N
as coupling € increases from O to infinity, but 7 must de-
crease from infinity to df as noise o? increases from O to
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infinity. Thus, A and 7 are both large when the coupling
is large and the noise is small; conversely, A and 7 are
both small when the coupling is small and the noise is
large. Consequently, the bottom right of noise versus
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FIG. 2. Effect of varying coupling and noise on the spatiotemporal evolution of an array of 65 oscillators. In the top panel the
periodic forcing is turned off; in bottom panel the forcing is turned on. Coupling and noise control the space and times scales: small
spatiotemporal features at top left and large spatiotemporal features at bottom right. All oscillators were started in random positions
in the blue well. Within each colored square, time increases upward and position along the array varies horizontally. Parameters are

the same as in Fig. 1.
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coupling space is dominated by large spatiotemporal  observations. For a given noise, if the coupling is subop-
features while the top left is dominated by small spa-  timal (in terms of maximizing output SNR), adjacent os-
tiotemporal features. cillators are likely to be forced in opposite wells; if the
Now turn on the forcing. The interplay of noise and  coupling is superoptimal, the entire chain is likely to
coupling is captured in the following symmetric pair of spend consecutive forcing periods trapped in the same
Coupling Coupling '
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FIG. 3. Contours of SNR plotted against a “tuning space” of coupling vs noise. Single uncoupled oscillator (left edge) outper-
forms the “water”-colored contours while the “island”-colored contours outperform the uncoupled oscillator. Parameters are the
same as in Fig. 1.
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well. (Superoptimal coupling makes the chain move
more like a single element, which underperforms an ar-
ray.) For a given coupling, if the noise is suboptimal, the
entire chain is likely to spend consecutive forcing periods
trapped in the same well; if the noise is superoptimal, ad-
jacent oscillators are likely to be forced in opposite wells.
Spatiotemporal synchronization (best SNR, two hops per
forcing period) involves balancing these two factors so
that A~N and 7~ T. This balance exists near the upper
right of the top panel of Fig. 2, where there are large
patches of blue and red. When the periodic forcing is
turned on in the bottom panel, these patches are replaced
by horizontal blue and red bands signifying synchronous
hopping.

Figure 3 illustrates the SNR of the middle oscillator as
contours plotted against noise and coupling, for six
different arrays sizes: 3, 5, 9, 17, 33, and 65. (These sizes
were chosen to be of the form 2"+1 so as to provide ar-
rays with middle elements, and data evenly spaced on a
logarithmic scale.) The noise scales are logarithmic while
the couplings scales are almost logarithmic: in place of a
In(e) scale, we use In(0.1+¢), allowing us to include, for
comparison, the uncoupled ¢ =0 case at the left edge of
the plots. A single uncoupled oscillator outperforms the
region of “tuning space” indicated by blue “water”
colors. Conversely, the region indicated by “island”
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colors outperforms a single uncoupled oscillator. Note
how the best SNR shifts to higher coupling and higher
noise as it saturates at about 25 dB. The best a single un-
coupled oscillator can do is about 17 dB.

Because of the computationally intensive PSD averag-
ing needed to form smooth contours, Fig. 3 represents
thousands of node hours of parallel supercomputer time
(two Intel PARAGON parallel supercomputers were
used). A more economical way of locating the best SNR
would be to compute instead some measure of synchroni-
zation, such as the occupancy function introduced in Ref.
[2].

Figure 4 illustrates the scaling of the optimal noise and
optimal coupling with array size. Here, we plot the nor-
malized coupling £/N? and normalized noise D /N. For
large N, these curves appear to asymptote to constant
values, as they should if the proposed scaling is correct.
Furthermore, they mirror the behavior of the best SNR
curve as it saturates at about 25 dB. The insets illustrate
Ve versus N and D versus N. The insets illustrate Ve
versus N and D vs N. They suggest that the scaling is ap-
proximately true for all N. However, a log-log plot re-
veals significant nonlinearity for small N.

The optimal coupling scales as N2 for the following
reason. Best SNR is characterized by synchronous hop-
ping of the chain [3,4]. The optimal coupling facilitates
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this hopping by binding the oscillators together tightly
enough so that the average size of spatial features in the
array, the correlation length, is on the order of N, the size
of the array. How does correlation length scale with the
coupling? If € is sufficiently large, we can neglect the po-
tential term in Eq. (1), and if we turn off the noise, the
equations of motion become

ms, =eV’x, +yX, + A sin2mt /T) , @

where V? is the discrete Laplacian. We recognize this as
a forced, damped wave equation with a wave velocity
proportional to V'e. Since the correlation length is the
length of the array which self-communicates, and since
information travels at the wave velocity, the correlation
length must be proportional to Ve [7]. The optimal cou-
pling €, is determined by v/ eo~N or g~ N2.

The optimal noise variance scales as NN for the follow-
ing reason. The optimal noise facilitates synchronized
motion by causing hopping of the entire array, bound by
the optimal coupling to a correlation length of N, twice
every forcing period. The noise has zero mean; it is fluc-
tuations from the mean that cause hopping. The larger
the array, the larger the needed fluctuation. In order to
expect such a fluctuation twice per forcing period, the
variance of the noise must increase as N increases. How
should the variance scale with array size? Let p
(f = fminlo?) be the probability per unit time that a sin-
gle uncoupled oscillator receives the minimum impulse
[ min Needed to hop over the barrier, given that the noise
distribution has variance o2. A coupled and coherent ar-
ray of size N, responding as a unit, will require an im-
pulse N times as great. However, for uncorrelated
Gaussian noise,

N J—
KJ z fnZImeinIIVU2 :p(fZ\/memlNUZ)

n=1

=0(f 2 frinlo?) . 3)
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The first equality in Eq. (3) follows from the fact that the
standard deviation of the sum of N independent identical-
ly distributed Gaussian random variables is V'N times as
large as their individual standard deviations. The second
equality follows because variance is the square root of the
standard deviation. Thus, in order to expect the neces-
sary fluctuation twice per forcing period, the optimal
noise variance o3 and PSD height D, must scale like
D,x0o3~N. A simple ¢* theory of kink-antikink nu-
cleation in a lattice yields the identical scaling behavior
[8].

In summary, we have argued that to tune ever larger
arrays of locally and linearly coupled bistable oscillators
to peak performance, as measured by signal processing
and synchronization, the optimal coupling must scale like
N? and the optimal noise variance must scale like N, for
large N. If this scaling is maintained, the coupling-
induced correlation length will match the length of the
array and the noise-generated mean hopping time will
match (half of) the forcing period, and a spatiotemporal
or space-time stochastic resonance will result.
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FIG. 1. Time evolution (up) of an array (across) of 512 locally and linearly coupled, bistable nonlinear oscillators. Oscillators in
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FIG. 2. Effect of varying coupling and noise on the spatiotemporal evolution of an array of 65 oscillators. In the top panel the
periodic forcing is turned off; in bottom panel the forcing is turned on. Coupling and noise control the space and times scales: small
spatiotemporal features at top left and large spatiotemporal features at bottom right. All oscillators were started in random positions

in the blue well. Within each colored square, time increases upward and position along the array varies horizontally. Parameters are
the same as in Fig. 1.
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